World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.
Hencky Bar-Chain/Net for Structural Analysis cover
Also available at Amazon and Kobo

As an emerging discrete structural model, the Hencky bar-chain/net model (HBM) has shown its advantages over other numerical methods in some problems. Owing to the discrete properties of HBM, it is also a suitable model for nano-scale structures which are currently a very hot research topic in mechanics.

This book introduces the concepts and previous research of the Hencky bar-chain/net model, before demonstrating how beams, columns, arches, rectangular plates and circular plates could be successfully modelled by HBM. HBM comprises rigid bars connected by frictionless hinges with elastic rotational springs (and a system of torsional springs in the cells for plates). In the treatment of the above-mentioned structures, HBM is found to be mathematically equivalent to the first order central finite difference method (FDM). So HBM may be regarded as the physical structural model behind the FDM.

This book is a compilation of the authors' research on the development of the Hencky bar-chain/net model, and is organized according to the development and application of HBM for beams, columns, frames, arches and rings, and plates. Exercises are provided at the end of each chapter to aid comprehension and guide learning. It is a useful reference for students, researchers, academics and practitioners in the field of structural analysis.

Sample Chapter(s)
Preface
Chapter 1: HENCKY BAR-CHAIN MODEL

Contents:
  • Preface
  • About the Authors
  • Hencky Bar-Chain Model
  • Uniform Beams
  • Non-Uniform Beams
  • Frames
  • Arches and Rings
  • Plates
  • Index
Readership: Senior undergraduate students, graduate students, researchers and practitioners in the field of structural analysis, academics who are teaching courses on structural stability and vibration.