Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

SEARCH GUIDE  Download Search Tip PDF File

  • articleNo Access

    Integration of Kalman filter in the epidemiological model: A robust approach to predict COVID-19 outbreak in Bangladesh

    As one of the most densely populated countries in the world, Bangladesh has been trying to contain the impact of a pandemic like coronavirus disease 2019 (COVID-19) since March, 2020. Although government announced an array of restricted measures to slow down the diffusion in the beginning of the pandemic, the lockdown has been lifted gradually by reopening all the industries, markets and offices with a notable exception of educational institutes. As the physical geography of Bangladesh is highly variable across the largest delta, the population of different regions and their lifestyle also differ in the country. Thus, to get the real scenario of the current pandemic and a possible second wave of COVID-19 transmission across Bangladesh, it is essential to analyze the transmission dynamics over the individual districts. In this paper, we propose to integrate the Unscented Kalman Filter (UKF) with classic SIRD model to explain the epidemic evolution of individual districts in the country. We show that UKF-SIRD model results in a robust prediction of the transmission dynamics for 1–4 months. Then we apply the robust UKF-SIRD model over different regions in Bangladesh to estimates the course of the epidemic. Our analysis demonstrates that in addition to the densely populated areas, industrial areas and popular tourist spots will be in the risk of higher COVID-19 transmission if a second wave of COVID-19 occurs in the country. In the light of these outcomes, we also provide a set of suggestions to contain the future pandemic in Bangladesh.

  • articleNo Access

    Adjusted dynamics of COVID-19 pandemic due to herd immunity in Bangladesh

    Amid growing debate between scientists and policymakers on the trade-off between public safety and reviving economy during the COVID-19 pandemic, the government of Bangladesh decided to relax the countrywide lockdown restrictions from the beginning of June 2020. Instead, the Ministry of Public Affairs officials have declared some parts of the capital city and a few other districts as red zones or high-risk areas based on the number of people infected in the late June 2020. Nonetheless, the COVID-19 infection rate had been increasing in almost every other part of the country. Ironically, rather than ensuring rapid tests and isolation of COVID-19 patients, from the beginning of July 2020, the Directorate General of Health Services restrained the maximum number of tests per laboratory. Thus, the health experts have raised the question of whether the government is heading toward achieving herd immunity instead of containing the COVID-19 pandemic. In this paper, the dynamics of the pandemic due to SARS-CoV-2 in Bangladesh is analyzed with integrated the Unscented Kalman Filter (UKF) in the SIRD model. We demonstrate that the herd immunity threshold can be reduced to 31% than that of 60% by considering age group cluster analysis resulting in a total of 53.0 million susceptible populations. With the data of COVID-19 cases till January, 2021, the time-varying reproduction numbers are used to explain the nature of the pandemic. Based on the estimations of active, severe and critical cases, we discuss a set of policy recommendations to improve the current pandemic control methods in Bangladesh.