Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

SEARCH GUIDE  Download Search Tip PDF File

  • articleNo Access

    RIDGE FREQUENCY ESTIMATION FOR LOW-QUALITY FINGERPRINT IMAGES ENHANCEMENT USING DELAUNAY TRIANGULATION

    In this paper, we propose a hybrid computational geometry-gray scale algorithm that enhances fingerprint images greatly. The algorithm extracts the local minima points that are positioned on the ridges of a fingerprint, then, it generates a Delaunay triangulation using these points of interest. This triangulation along with the local orientations give an accurate distance and orientation-based ridge frequency. Finally, a tuned anisotropic filter is locally applied and the enhanced output fingerprint image is obtained. When the algorithm is applied to rejected fingerprint images from FVC2004 DB2 database by the veryfinger application, these images pass and experimental results show that we obtain a low false and missed minutiae rate with an almost uniform distribution over the database. Moreover, the application of the proposed algorithm enables the extraction of features from all low-quality fingerprint images where the equal error rate of verification is decreased from 6.50% to 5% using nondamaged low-quality images in the database.