Please login to be able to save your searches and receive alerts for new content matching your search criteria.
There is mounting evidence for dark matter in the Universe and one of the favourite dark matter candidates is the neutralino, which naturally appears as the lightest supersymmetric particle (LSP) in many supersymmetric extensions of the standard model. The neutralino has the desired properties to be a good dark matter candidate and we will here review the different indirect searches for neutralino dark matter and discuss the implications on these from recent direct searches.
The question of the nature of dark matter in the Universe remains one of the most outstanding unsolved problems in basic science. One of the best motivated particle physics candidates is the lightest supersymmetric particle, assumed to be the lightest neutralino. We here describe DarkSUSY, an advanced numerical FORTRAN package for supersymmetric dark matter calculations. With DarkSUSY one can: (i) compute masses and compositions of various supersymmetric particles; (ii) compute the relic density of the lightest neutralino, using accurate methods which include the effects of resonances, pair production thresholds and coannihilations; (iii) check accelerator bounds to identify allowed supersymmetric models; and (iv) obtain neutralino detection rates for a variety of detection methods, including direct detection and indirect detection through antiprotons, gamma-rays and positrons from the Galactic halo or neutrinos from the center of the Earth or the Sun.
Using a new instrument, the HEAT collaboration has confirmed the excess of cosmic ray positrons that they first detected in 1994. We explore the possibility that this excess is due to the annihilation of neutralino dark matter in the galactic halo. We confirm that neutralino annihilation can produce enough positrons to make up the measured excess only if there is an additional enhancement to the signal. We quantify the ‘boost factor’ that is required in the signal for various models in the Minimal Supersymmetric Standard Model parameter space, and find that a boost factor ≥ 30 provides good fits to the HEAT data. Such an enhancement in the signal could arise if we live in a clumpy halo.
A new Solar System population of Weakly Interacting Massive Particle (WIMP) dark matter has been proposed to exist. We investigate the implications of this population on indirect signals in neutrino telescopes (due to WIMP annihilations in the Earth) for the case when the WIMP is the lightest neutralino of the MSSM, the minimal supersymmetric extension of the standard model. The velocity distribution and capture rate of this new population is evaluated and the flux of neutrino-induced muons from the center of the Earth in neutrino telescopes is calculated. We show that the effects of the new population can be crucial for masses around 60–120 GeV, where enhancements of the predicted muon flux from the center of the Earth by up to a factor of 100 compared to previously published estimates occur. As a result of the new WIMP population, neutrino telescopes should be able to probe a much larger region of parameter space in this mass range.
The question of the nature of the dark matter in the Universe remains one of the most outstanding unsolved problems in basic science. One of the best motivated particle physics candidates is the lightest supersymmetric particle, assumed to be the lightest neutralino. We here describe DarkSUSY, an advanced numerical FORTRAN package for supersymmetric dark matter calculations which we release for public use. With the help of this package, the masses and compositions of various supersymmetric particles can be computed, for given input parameters of the minimal supersymmetric extension of the Standard Model (MSSM). For the lightest neutralino, the relic density is computed, using accurate methods which include the effects of resonances, pair production thresholds and coannihilations. Accelerator bounds are checked to identify viable dark matter candidates. Finally, detection rates are computed for a variety of detection methods, such as direct detection and indirect detection through antiprotons, gamma-rays and positrons from the Galactic halo or neutrinos from the center of the Earth or the Sun.
We report on the search for nearly vertical up-going muon neutrinos from WIMP annihilations in the center of the Earth with the AMANDA-Bl0 detector. The whole data sample collected in 1997, 109 events, has been analyzed and a final sample of 15 up-going events is found in a restricted zenith angular region where a signal from WIMP annihilations is expected. A preliminary upper limit at 90% confidence level on the annihilation rate of WIMPs in the center of the Earth is presented.