Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

SEARCH GUIDE  Download Search Tip PDF File

  • articleNo Access

    INTERACTION BETWEEN PERIODIC ELASTIC WAVES AND TWO CONTACT NONLINEARITIES

    Propagation of elastic waves is studied in a 1D medium containing two cracks. The latter are modeled by smooth nonlinear jump conditions accounting for the finite, non-null compressibility of real cracks. The evolution equations are written in the form of a system of two nonlinear neutral delay differential equations, leading to a well-posed Cauchy problem. Perturbation analysis indicates that, under periodic excitation, the periodic solutions oscillate around positive mean values, which increase with the forcing level. This typically nonlinear phenomenon offers non-destructive means to evaluate the cracks. Existence, uniqueness and attractivity of periodic solutions is then examined. At some particular values of the ratio between the wave travel time and the period of the source, results are obtained whatever the forcing level. With a much larger set of ratios but at small forcing levels, results are obtained under a Diophantine condition. Lastly, numerical experiments are proposed to illustrate the behavior of the periodic diffracted waves.