Please login to be able to save your searches and receive alerts for new content matching your search criteria.
We investigate the influence of the different vertices of two-point correlation functions in the infrared regime of Yang–Mills theory using a phenomenological description. This regime is studied in Landau-gauge and using perturbation theory within a phenomenological massive model. We perform a one-loop calculation for two-point correlation functions taking into account the different roles of the various interactions in the infrared. Our results show a good agreement with the lattice data.
Proper Orthogonal Decomposition (POD) was used as a suitable tool to characterize the evolution of fingers regime in Faraday instability. The transition from harmonic to subharmonic resonant finger behavior was thus studied. A cluster algorithm and Voronoi neighbor statistics were used to characterize the surface peak distribution for the principal spatial pattern. The structural transition was analyzed for varying acceleration amplitude used as system control parameter.