World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Photodynamic therapy against achromic M6 melanocytes: phototoxicity of lipophilic axially substituted aluminum phthalocyanines and hexadecahalogenated zinc phthalocyanines

    https://doi.org/10.1002/jpp.343Cited by:13 (Source: Crossref)

    Lipophilic and axially substituted tri-n-hexylsiloxy aluminum phthalocyanine and cholesteryloxy diphenylsiloxy aluminum phthalocyanine were synthesized and assayed in PDT against M6 melanocytes. In the conditions used (λ > 480 nm, 10 mW cm-2, egg-yolk lecithin or cremophor EL formulation) they both exhibited a higher photodynamic effect than chloroaluminum phthalocyanine. They displayed 2% to 3.5% cell viability at 10-5M dose for 20 min irradiation. Hexadecafluoro zinc phthalocyanine was synthesized to increase the lipophilicity of zinc phthalocyanine, hexadecachloro zinc phthalocyanine was also included because it would theoretically enhance the phototoxicity. In all the delivery systems used, their photodynamic effect against M6 melanocytes was lower in comparison with zinc phthalocyanine and axially substituted aluminum phthalocyanines. A 2 h irradiation treatment with 3 × 10-6M hexadecafluoro zinc phthalocyanine and 10-5 M hexadecachloro zinc phthalocyanine led to 60% and 15% cell viability respectively. In all cases, the cell killing effect was light-and dose-dependent and was higher in cremophor EL micelles than in the egg-yolk lecithin formulation.

    Most comprehensive & up-to-date research on PORPHYRINS
    Handbook of Porphyrin Science now available in 46 volumes