World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×
Spring Sale: Get 35% off with a min. purchase of 2 titles. Use code SPRING35. Valid till 31st Mar 2025.

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.
Gibbs Measures on Cayley Trees cover
Also available at Amazon and Kobo

The purpose of this book is to present systematically all known mathematical results on Gibbs measures on Cayley trees (Bethe lattices).

The Gibbs measure is a probability measure, which has been an important object in many problems of probability theory and statistical mechanics. It is the measure associated with the Hamiltonian of a physical system (a model) and generalizes the notion of a canonical ensemble. More importantly, when the Hamiltonian can be written as a sum of parts, the Gibbs measure has the Markov property (a certain kind of statistical independence), thus leading to its widespread appearance in many problems outside of physics such as biology, Hopfield networks, Markov networks, and Markov logic networks. Moreover, the Gibbs measure is the unique measure that maximizes the entropy for a given expected energy.

The method used for the description of Gibbs measures on Cayley trees is the method of Markov random field theory and recurrent equations of this theory, but the modern theory of Gibbs measures on trees uses new tools such as group theory, information flows on trees, node-weighted random walks, contour methods on trees, and nonlinear analysis. This book discusses all the mentioned methods, which were developed recently.

Sample Chapter(s)
Chapter 1: Properties of a Group Representation of the Cayley Tree (457 KB)


Contents:
  • Group Representation of the Cayley Tree
  • Ising Model on the Cayley Tree
  • Ising Type Models with Competing Interactions
  • Information Flow on Trees
  • The Potts Model
  • The Solid-on-Solid Model
  • Models with Hard Constraints
  • Potts Model with Countable Set of Spin Values
  • Models with Uncountable Set of Spin Values
  • Contour Arguments on Cayley Trees
  • Other Models

Readership: Researchers in mathematical physics, statistical physics, probability and measure theory.