World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Novel soliton solutions of four sets of generalized (2+1)-dimensional Boussinesq–Kadomtsev–Petviashvili-like equations

    https://doi.org/10.1142/S0217984921505308Cited by:31 (Source: Crossref)

    In this paper, we examined four different forms of generalized (2+1)-dimensional Boussinesq–Kadomtsev–Petviashvili (B-KP)-like equations. In this connection, an accurate computational method based on the Riccati equation called sub-equation method and its Bäcklund transformation is employed. Using this method, numerous exact solutions that do not exist in the literature have been obtained in the form of trigonometric, hyperbolic, and rational. These solutions are of considerable importance in applied sciences, coastal, and ocean engineering, where the B–KP-like equations modeled for some significant physical phenomenon. The graph of the bright and dark solitons is presented in order to demonstrate the influence of different physical parameters on the solutions. All of the findings prove the stability, effectiveness, and accuracy of the proposed method.