World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

SENSITIVITY ANALYSIS IN MULTI-OBJECTIVE EVOLUTIONARY DESIGN

    https://doi.org/10.1142/9789812561794_0021Cited by:0 (Source: Crossref)
    Abstract:

    In real world engineering design problems we have to search for solutions that simultaneously optimize a wide range of different criteria. Furthermore, the optimal solutions also have to be robust. Therefore, this chapter describes a method where a multi-objective genetic algorithm is combined with response surface methods in order to assess the robustness of a set of identified optimal solutions. The multi-objective genetic algorithm is used in order to optimize two different concepts of hydraulic actuation systems. The different concepts have been modeled in a simulation environment to which the optimization strategy has been coupled. The outcome from the optimization is a set of Pareto optimal solutions that elucidate the tradeoff between the energy consumption and the control error for each actuation system. Based on these Pareto fronts, promising regions could be identified for each concept. In these regions sensitivity analyses are performed with the help of response surface methods. It can then be determined how different design parameters affect the system for different optimal solutions.