World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

A Cost-Effective Rapid-Cycling Synchrotron

    https://doi.org/10.1142/9789811209604_0013Cited by:0 (Source: Crossref)
    Abstract:

    The present Fermilab proton Booster is an early example of a rapid-cycling synchrotron (RCS). Built in 1960s, it features a design in which the combined-function dipole magnets serve as vacuum chambers. Such a design is quite cost-effective, and it does not have the limitations associated with the eddy currents in a metallic vacuum chamber. However, an important drawback of that design is a high impedance, as seen by a beam, because of the magnet laminations. More recent RCS designs (e.g. J-PARC) employ large and complex ceramic vacuum chambers in order to mitigate the eddy-current effects and to shield the beam from the magnet laminations. Such a design, albeit very successful, is quite costly because it requires large-bore magnets and large-bore RF cavities. In this paper, we consider an RCS concept with a thin-wall metallic vacuum chamber as a compromise between the chamber-less Fermilab Booster design and the large-bore design with ceramic chambers.