World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

ENHANCING POWER ELECTRONIC DEVICES WITH WIDE BANDGAP SEMICONDUCTORS

    https://doi.org/10.1142/9789812773081_0033Cited by:0 (Source: Crossref)
    Abstract:

    Silicon carbide (SiC) unipolar devices have much higher breakdown voltages than silicon (Si) unipolar devices because of the ten times greater electric field strength of SiC compared with Si. 4H-SiC unipolar devices have higher switching speeds due to the higher bulk mobility of 4H-SiC compared to other polytypes. In this paper, four commercially available SiC Schottky diodes with different voltage and current ratings, VJFET, and MOSFET samples have been tested to characterize their performance at different temperatures ranging from -50°C to 175°C. Their forward characteristics and switching characteristics in this temperature range are presented. The characteristics of the SiC Schottky diodes are compared with those of a Si pn diode with comparable ratings.