World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×
Spring Sale: Get 35% off with a min. purchase of 2 titles. Use code SPRING35. Valid till 31st Mar 2025.

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

COMBINED NEURAL-NET/KNOWLEDGE-BASED ADAPTIVE SYSTEMS FOR LARGE SCALE DYNAMIC CONTROL

    https://doi.org/10.1142/9789812814890_0001Cited by:0 (Source: Crossref)
    Abstract:

    The control of small-scale systems using either knowledge-based or neural net methods is quite feasible. Large scale systems, however, introduce complexities in modeling and excessive computation time. This paper attacks these difficulties by breaking down the problem into a hierarchy of control contexts. The lowest level of this hierarchy is implemented as rule sets and/or neural networks. A method using "hints" is shown to greatly reduce training time in back-propagation neural nets.