Numerical Characterization of Dyakonov-Shur Instability in Gated Two-Dimensional Electron Systems
We numerically analyze the system based on the essentially non-oscillatory shock capturing scheme in order to characterize the Dyakonov-Shur (DS) instability in a gated two-dimensional electron gas system (2DES). The predictions of the linearized model are examined for a 2DES sandwiched by the top and back metallic gates. By solving Poisson equation self-consistently, the dispersive properties of plasma wave are properly estimated. Special attention is paid to the impact of dispersion to nonlinear dynamics of plasma-wave oscillation. A single-gated 2DES is also investigated for demonstrating the DS instability in practical devices.