World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

THE ELECTROCHEMICAL BEHAVIOR OF Mg-Ce-Zn SYSTEM

    https://doi.org/10.1142/9789814322799_0028Cited by:0 (Source: Crossref)
    Abstract:

    In the present work, the electrochemical behavior of Mg-xCe-1Zn (x = 3, 8 and 13wt.%) alloys have been investigated. The alloys were fabricated by using a vacuum induction melting method under an argon atmosphere. Potentiodynamic polarization was carried out in 3.5% NaCl solution of pH 7.2 at room temperature to evaluate the corrosion properties of Mg-xCe-1Zn (x = 3, 8 and 13wt.%) alloys. The microstructure of the Mg-(3, 8 and 13wt.%)Ce-1Zn alloys were mainly consisted of α-Mg and eutectic Mg12Ce phase. With the increase of Ce contents, the volume percent and size of the eutectic Mg12Ce phase were increased. Results indicated that the corrosion rate of Mg-xCe-Zn alloy was increased by the excessive Ce addition.