World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

FABRICATION OF HIGHLY-OLEOPHOBIC AND SUPERHYDROPHOBIC SURFACES ON MICROTEXTURED Al SUBSTRATES

    https://doi.org/10.1142/9789814322799_0029Cited by:0 (Source: Crossref)
    Abstract:

    Theoretical calculations suggest that creating highly-oleophobic surfaces would require a surface energy lower than that of any known materials. In the present work, we demonstrate microtextured Al substrate surfaces with veins-like micro/nanostructures displaying apparent contact angles (CA) greater than 120°, even with nitromethane (surface tension γ1 = 37 mN/m). The Al substrate was microtextured by a chemical solution mixed by zinc nitrate hexahydrate, hexamethyltetramine and a little of hydrofluoric acid. A fluoroalkylsilane (FAS) agent was used to tune the surface wettability. The Al substrates were microtextured by veins-like micro/nanostructures and generating a solid-liquid-vapor composite interface. Combination with FAS modification, the Al surfaces resulted in an oleophobicity with CA for nitromethane was 126.3° (152.7° for diethylene glycol, γ1 = 45.2 mN/m). In addition, the Al surfaces demonstrated a low rolling-off angle with < 6° even for diethylene glycol. However, nitromethane droplet favored to pin on the sample surface even the sample stage is tilted to 90°. It is noted that this highly-oleophobic behavior is induced mainly by topography, which form a composite surface of air and solid with oil drop sitting partially on air. The results are expected to promote the study on self-cleaning applications, especially in the condition with oil contaminations.