World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

ON SCHEDULING SERIES-PARALLEL DAGs TO MAXIMIZE AREA

    https://doi.org/10.1142/S0129054114500245Cited by:14 (Source: Crossref)

    The AREA of a schedule for executing DAGs is the average number of DAG-chores that are eligible for execution at each step of the computation. AREA maximization is a new optimization goal for schedules that execute DAGs within computational environments, such as Internet-based computing, clouds, and volunteer computing projects, that are dynamically heterogeneous, in the sense that the environments' constituent computers can change their effective powers at times and in ways that are not predictable. This paper is motivated by the thesis that, within dynamically heterogeneous environments, DAG-schedules that have larger AREAs execute a computation-DAG with smaller completion time under many circumstances; this thesis is supported by preliminary simulation-based experiments. While every DAG admits an AREA-maximizing schedule, it is likely computationally difficult to find such a schedule for an arbitrary DAG. Earlier work has shown how to craft AREA-maximizing schedules efficiently for a number of families of DAGs whose structures are reminiscent of many scientific computations. The current paper extends this work by showing how to efficiently craft AREA-maximizing schedules for series-parallel DAGs, a family that models a multithreading computing paradigm. The techniques for crafting these schedules promise to apply also to other large families of recursively defined DAGs. Moreover, the ability to derive these schedules efficiently leads to an efficient AREA-oriented heuristic for scheduling arbitrary DAGs.

    A portion of this work was presented at EURO-PAR'10 [12].