Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

SEARCH GUIDE  Download Search Tip PDF File

  • articleNo Access

    ON SCHEDULING SERIES-PARALLEL DAGs TO MAXIMIZE AREA

    The AREA of a schedule for executing DAGs is the average number of DAG-chores that are eligible for execution at each step of the computation. AREA maximization is a new optimization goal for schedules that execute DAGs within computational environments, such as Internet-based computing, clouds, and volunteer computing projects, that are dynamically heterogeneous, in the sense that the environments' constituent computers can change their effective powers at times and in ways that are not predictable. This paper is motivated by the thesis that, within dynamically heterogeneous environments, DAG-schedules that have larger AREAs execute a computation-DAG with smaller completion time under many circumstances; this thesis is supported by preliminary simulation-based experiments. While every DAG admits an AREA-maximizing schedule, it is likely computationally difficult to find such a schedule for an arbitrary DAG. Earlier work has shown how to craft AREA-maximizing schedules efficiently for a number of families of DAGs whose structures are reminiscent of many scientific computations. The current paper extends this work by showing how to efficiently craft AREA-maximizing schedules for series-parallel DAGs, a family that models a multithreading computing paradigm. The techniques for crafting these schedules promise to apply also to other large families of recursively defined DAGs. Moreover, the ability to derive these schedules efficiently leads to an efficient AREA-oriented heuristic for scheduling arbitrary DAGs.

  • articleNo Access

    RELIABLE INTERNET-BASED MASTER-WORKER COMPUTING IN THE PRESENCE OF MALICIOUS WORKERS

    We consider a Master-Worker distributed system where a master processor assigns, over the Internet, tasks to a collection of n workers, which are untrusted and might act maliciously. In addition, a worker may not reply to the master, or its reply may not reach the master, due to unavailabilities or failures of the worker or the network. Each task returns a value, and the goal is for the master to accept only correct values with high probability. Furthermore, we assume that the service provided by the workers is not free; for each task that a worker is assigned, the master is charged with a work-unit. Therefore, considering a single task assigned to several workers, our objective is to have the master processor to accept the correct value of the task with high probability, with the smallest possible amount of work (number of workers the master assigns the task). We probabilistically bound the number of faulty processors by assuming a known probability p < 1/2 of any processor to be faulty.

    Our work demonstrates that it is possible to obtain, with provable analytical guarantees, high probability of correct acceptance with low work. In particular, we first show lower bounds on the minimum amount of (expected) work required, so that any algorithm accepts the correct value with probability of success 1 - ε, where ε ≪ 1 (e.g., 1/n). Then we develop and analyze two algorithms, each using a different decision strategy, and show that both algorithms obtain the same probability of success 1 - ε, and in doing so, they require similar upper bounds on the (expected) work. Furthermore, under certain conditions, these upper bounds are asymptotically optimal with respect to our lower bounds.