World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

PROCESSOR LOWER BOUND FORMULAS FOR ARRAY COMPUTATIONS AND PARAMETRIC DIOPHANTINE SYSTEMS

    https://doi.org/10.1142/S0129054198000295Cited by:4 (Source: Crossref)

    Using a directed acyclic graph (dag) model of algorithms, we solve a problem related to precedence-constrained multiprocessor schedules for array computations: Given a sequence of dags and linear schedules parametrized by n, compute a lower bound on the number of processors required by the schedule as a function of n. In our formulation, the number of tasks that are scheduled for execution during any fixed time step is the number of non-negative integer solutions dn to a set of parametric linear Diophantine equations. We present an algorithm based on generating functions for constructing a formula for these numbers dn. The algorithm has been implemented as a Mathematica program. Example runs and the symbolic formulas for processor lower bounds automatically produced by the algorithm for Matrix-Vector Product, Triangular Matrix Product, and Gaussian Elimination problems are presented. Our approach actually solves the following more general problem: Given an arbitrary r× s integral matrix A and r-dimensional integral vectors b and c, let dn(n=0,1,…) be the number of solutions in non-negative integers to the system Az=nb+c. Calculate the (rational) generating function ∑n≥ 0dntn and construct a formula for dn.