Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

SEARCH GUIDE  Download Search Tip PDF File

  • articleNo Access

    PROCESSOR LOWER BOUND FORMULAS FOR ARRAY COMPUTATIONS AND PARAMETRIC DIOPHANTINE SYSTEMS

    Using a directed acyclic graph (dag) model of algorithms, we solve a problem related to precedence-constrained multiprocessor schedules for array computations: Given a sequence of dags and linear schedules parametrized by n, compute a lower bound on the number of processors required by the schedule as a function of n. In our formulation, the number of tasks that are scheduled for execution during any fixed time step is the number of non-negative integer solutions dn to a set of parametric linear Diophantine equations. We present an algorithm based on generating functions for constructing a formula for these numbers dn. The algorithm has been implemented as a Mathematica program. Example runs and the symbolic formulas for processor lower bounds automatically produced by the algorithm for Matrix-Vector Product, Triangular Matrix Product, and Gaussian Elimination problems are presented. Our approach actually solves the following more general problem: Given an arbitrary r× s integral matrix A and r-dimensional integral vectors b and c, let dn(n=0,1,…) be the number of solutions in non-negative integers to the system Az=nb+c. Calculate the (rational) generating function ∑n≥ 0dntn and construct a formula for dn.

  • articleNo Access

    An effective characterization of complete monomial ideals in two variables

    We give a criterion for a monomial ideal in two variables to be complete (i.e. integrally closed) in terms of the exponents of the generators. This gives a positive answer to a question raised recently by P. Gimenez, A. Simis, W. Vasconcelos and R. Villarreal, On complete monomial ideals, J. Commut. Algebra, to appear, arXiv:1310.7793.

  • articleNo Access

    ENUMERATING PRIME LINKS BY A CANONICAL ORDER

    The first author defined a well-order in the set of links by embedding it into a canonical well-ordered set of (integral) lattice points. He also gave elementary transformations among lattice points to enumerate the prime links in terms of lattice points under this order. In this paper, we add some new elementary transformations and explain how to enumerate the prime links. We show a table of the first 443 prime links arising from the lattice points of lengths up to 10 under this order. Our argument enables us to find 7 omissions and 1 overlap in Conway's table of prime links of 10 crossings.

  • chapterNo Access

    ENUMERATING 3-MANIFOLDS BY A CANONICAL ORDER

    A well-order was introduced on the set of links by A. Kawauchi [3]. This well-order also naturally induces a well-order on the set of prime link exteriors and eventually induces a well-order on the set of closed connected orientable 3-manifolds. With respect to this order, we enumerated the prime links with lengths up to 10 and the prime link exteriors with lengths up to 9. Our present plan is to enumerate the 3–manifolds by using the enumeration of the prime link exteriors. In this paper, we show our latest result in this plan and as an application, give a new proof of the identification of Perko's pair.