World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

CONSTRUCTION OF METASTABLE STATES IN QUANTUM ELECTRODYNAMICS

    https://doi.org/10.1142/S0129055X04001935Cited by:3 (Source: Crossref)

    In this paper, we construct metastable states of atoms interacting with the quantized radiation field. These states emerge from the excited bound states of the non-interacting system. We prove that these states obey an exponential time-decay law. In detail, we show that their decay is given by an exponential function in time, predicted by Fermi's Golden Rule, plus a small remainder term. The latter is proportional to the (4+β)th power of the coupling constant and decays algebraically in time. As a result, though it is small, it dominates the decay for large times. A central point of the paper is that our remainder term is significantly smaller than the one previously obtained in [1] and as a result we are able to show that the time interval during which the Fermi's Golden Rule can be observed is significantly longer that the time interval obtained in [1]. This improvement is achieved by incorporating a part of the complex dilatation resonance states into our construction of the metastable states rather than using the unperturbed eigenstates (the excited bound states of the non-interacting system). Thus, the connection to resonance states allows us to introduce metastable states which qualify better in the description of unstable excited states of the interacting system.