World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

GEODESIC FLOW ON EXTENDED BOTT–VIRASORO GROUP AND GENERALIZED TWO-COMPONENT PEAKON TYPE DUAL SYSTEMS

    https://doi.org/10.1142/S0129055X08003523Cited by:6 (Source: Crossref)

    This paper discusses an algorithmic way of constructing integrable evolution equations based on Lie algebraic structure. We derive, in a pedagogical style, a large class of two-component peakon type dual systems from their two-component soliton equations counter part. We study the essential aspects of Hamiltonian flows on coadjoint orbits of the centrally extended semidirect product group to give a systematic derivation of the dual counter parts of various two-component of integrable systems, viz., the dispersive water wave equation, the Kaup–Boussinesq system and the Broer–Kaup system, using moment of inertia operators method and the (frozen) Lie–Poisson structure. This paper essentially gives Lie algebraic explanation of Olver–Rosenau's paper [31].

    AMSC: 53A07, 53B50