Loading [MathJax]/jax/output/CommonHTML/jax.js
World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

The Wasserstein geometry of nonlinear σ models and the Hamilton–Perelman Ricci flow

    https://doi.org/10.1142/S0129055X17500015Cited by:8 (Source: Crossref)

    Nonlinear sigma models are quantum field theories describing, in the large deviation sense, random fluctuations of harmonic maps between a Riemann surface and a Riemannian manifold. Via their formal renormalization group analysis, they provide a framework for possible generalizations of the Hamilton–Perelman Ricci flow. By exploiting the heat kernel embedding introduced by Gigli and Mantegazza, we show that the Wasserstein geometry of the space of probability measures over Riemannian metric measure spaces provides a natural setting for discussing the relation between nonlinear sigma models and Ricci flow theory. In particular, we analyze the embedding of Ricci flow into a heat kernel renormalization group flow for dilatonic nonlinear sigma models, and characterize a non-trivial generalization of the Hamilton–Perelman version of the Ricci flow. We discuss in detail the monotonicity and gradient flow properties of this extended flow.

    AMSC: 53C44, 58D25, 58D30, 81T17