The recent evolution of the observational technics and the development of new tools in cosmology and gravitation have a significant impact on the study of the cosmological models. In particular, the qualitative and numerical methods used in dynamical system and elsewhere, enable the resolution of some difficult problems and allow the analysis of different cosmological models even with a limited number of symmetries.
On the other hand, following Einstein point of view the manifold ℳ and the metric should be built simultaneously when solving Einstein’s equation Rμν−12Rgμν=Tμν. From this point of view, the only kinematic condition imposed is that at each point of space–time, the tangent space is endowed with a metric (which is a Minkowski metric in the physical case of pseudo-Riemannian manifolds and an Euclidean one in the Riemannian analogous problem). Then the field (gμν) describes the way these metrics depend on the point in a smooth way and the Einstein equation is the “dynamical” constraint on gμν. So, we have to imagine an infinite continuous family of copies of the same Minkowski or Euclidean space and to find a way to sew together these infinitesimal pieces into a manifold, by respecting Einstein’s equation. Thus, Einstein field equations do not fix once and for all the global topology. 34 Given this freedom in the topology of the space–time manifold, a question arises as to how free the choice of these topologies may be and how one may hope to determine them, which in turn is intimately related to the observational consequences of the space–time possessing nontrivial topologies.
Therefore, in this paper we will use a different qualitative dynamical methods to determine the actual topology of the space–time.