World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

ON THE PROBABILISTIC OPTIMIZATION OF SPIKING NEURAL NETWORKS

    https://doi.org/10.1142/S0129065710002565Cited by:39 (Source: Crossref)

    The construction of a Spiking Neural Network (SNN), i.e. the choice of an appropriate topology and the configuration of its internal parameters, represents a great challenge for SNN based applications. Evolutionary Algorithms (EAs) offer an elegant solution for these challenges and methods capable of exploring both types of search spaces simultaneously appear to be the most promising ones. A variety of such heterogeneous optimization algorithms have emerged recently, in particular in the field of probabilistic optimization. In this paper, a literature review on heterogeneous optimization algorithms is presented and an example of probabilistic optimization of SNN is discussed in detail. The paper provides an experimental analysis of a novel Heterogeneous Multi-Model Estimation of Distribution Algorithm (hMM-EDA). First, practical guidelines for configuring the method are derived and then the performance of hMM-EDA is compared to state-of-the-art optimization algorithms. Results show hMM-EDA as a light-weight, fast and reliable optimization method that requires the configuration of only very few parameters. Its performance on a synthetic heterogeneous benchmark problem is highly competitive and suggests its suitability for the optimization of SNN.