World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

THE S2-ENSEMBLE FUSION ALGORITHM

    https://doi.org/10.1142/S0129065711003012Cited by:11 (Source: Crossref)

    This paper presents a novel model for performing classification and visualization of high-dimensional data by means of combining two enhancing techniques. The first is a semi-supervised learning, an extension of the supervised learning used to incorporate unlabeled information to the learning process. The second is an ensemble learning to replicate the analysis performed, followed by a fusion mechanism that yields as a combined result of previously performed analysis in order to improve the result of a single model. The proposed learning schema, termed S2-Ensemble, is applied to several unsupervised learning algorithms within the family of topology maps, such as the Self-Organizing Maps and the Neural Gas. This study also includes a thorough research of the characteristics of these novel schemes, by means quality measures, which allow a complete analysis of the resultant classifiers from the viewpoint of various perspectives over the different ways that these classifiers are used. The study conducts empirical evaluations and comparisons on various real-world datasets from the UCI repository, which exhibit different characteristics, so to enable an extensive selection of situations where the presented new algorithms can be applied.

    Remember to check out the Most Cited Articles!

    Check out our titles in neural networks today!