Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

SEARCH GUIDE  Download Search Tip PDF File

  • articleNo Access

    NEURAL NETWORK BASED TEMPORAL VIDEO SEGMENTATION

    The organization of video information in video databases requires automatic temporal segmentation with minimal user interaction. As neural networks are capable of learning the characteristics of various video segments and clustering them accordingly, in this paper, a neural network based technique is developed to segment the video sequence into shots automatically and with a minimum number of user-defined parameters. We propose to employ growing neural gas (GNG) networks and integrate multiple frame difference features to efficiently detect shot boundaries in the video. Experimental results are presented to illustrate the good performance of the proposed scheme on real video sequences.

  • articleNo Access

    THE S2-ENSEMBLE FUSION ALGORITHM

    This paper presents a novel model for performing classification and visualization of high-dimensional data by means of combining two enhancing techniques. The first is a semi-supervised learning, an extension of the supervised learning used to incorporate unlabeled information to the learning process. The second is an ensemble learning to replicate the analysis performed, followed by a fusion mechanism that yields as a combined result of previously performed analysis in order to improve the result of a single model. The proposed learning schema, termed S2-Ensemble, is applied to several unsupervised learning algorithms within the family of topology maps, such as the Self-Organizing Maps and the Neural Gas. This study also includes a thorough research of the characteristics of these novel schemes, by means quality measures, which allow a complete analysis of the resultant classifiers from the viewpoint of various perspectives over the different ways that these classifiers are used. The study conducts empirical evaluations and comparisons on various real-world datasets from the UCI repository, which exhibit different characteristics, so to enable an extensive selection of situations where the presented new algorithms can be applied.