Please login to be able to save your searches and receive alerts for new content matching your search criteria.
The organization of video information in video databases requires automatic temporal segmentation with minimal user interaction. As neural networks are capable of learning the characteristics of various video segments and clustering them accordingly, in this paper, a neural network based technique is developed to segment the video sequence into shots automatically and with a minimum number of user-defined parameters. We propose to employ growing neural gas (GNG) networks and integrate multiple frame difference features to efficiently detect shot boundaries in the video. Experimental results are presented to illustrate the good performance of the proposed scheme on real video sequences.
This paper presents a novel model for performing classification and visualization of high-dimensional data by means of combining two enhancing techniques. The first is a semi-supervised learning, an extension of the supervised learning used to incorporate unlabeled information to the learning process. The second is an ensemble learning to replicate the analysis performed, followed by a fusion mechanism that yields as a combined result of previously performed analysis in order to improve the result of a single model. The proposed learning schema, termed S2-Ensemble, is applied to several unsupervised learning algorithms within the family of topology maps, such as the Self-Organizing Maps and the Neural Gas. This study also includes a thorough research of the characteristics of these novel schemes, by means quality measures, which allow a complete analysis of the resultant classifiers from the viewpoint of various perspectives over the different ways that these classifiers are used. The study conducts empirical evaluations and comparisons on various real-world datasets from the UCI repository, which exhibit different characteristics, so to enable an extensive selection of situations where the presented new algorithms can be applied.