World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

RANKING-BASED KERNELS IN APPLIED BIOMEDICAL DIAGNOSTICS USING A SUPPORT VECTOR MACHINE

    https://doi.org/10.1142/S0129065711002961Cited by:23 (Source: Crossref)

    This paper presents some essential findings and results on using ranking-based kernels for the analysis and utilization of high dimensional and noisy biomedical data in applied clinical diagnostics. We claim that presented kernels combined with a state-of-the-art classification technique — a Support Vector Machine (SVM) — could significantly improve the classification rate and predictive power of the wrapper method, e.g. SVM. Moreover, the advantage of such kernels could be potentially exploited for other kernel methods and essential computer-aided tasks such as novelty detection and clustering. Our experimental results and theoretical generalization bounds imply that ranking-based kernels outperform other traditionally employed SVM kernels on high dimensional biomedical and microarray data.