World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

MULTICHANNEL DECODING FOR PHASE-CODED SSVEP BRAIN–COMPUTER INTERFACE

    https://doi.org/10.1142/S0129065712500220Cited by:33 (Source: Crossref)

    We propose a complex-valued multilayer feedforward neural network classifier for decoding of phase-coded information from steady-state visual evoked potentials. To optimize the performance of the classifier we supply it with two filter-based feature selection strategies. The proposed approaches could be used for a phase-coded brain–computer interface, enabling to encode several targets using only one stimulation frequency. The proposed classifier is a multichannel one, which distinguishes our approach from the existing single-channel ones. We show that the proposed approach outperforms others in terms of accuracy and length of the data segments used for decoding. We show that the decoding based on one optimally selected channel yields an inferior performance compared to the one based on several features, which supports our argument for a multichannel approach.