World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Electrode Fusion for the Prediction of Self-Initiated Fine Movements from Single-Trial Readiness Potentials

    https://doi.org/10.1142/S0129065715500148Cited by:12 (Source: Crossref)

    Current human-machine interfaces (HMIs) for users with severe disabilities often have difficulty distinguishing between intentional and inadvertent activations. Pre-movement neuro-cortical activity may aid in this elusive discrimination task but has not been exploited in HMIs. This work investigates the utility of the readiness potential (RP), a slow negative cortical potential preceding voluntary movement, for detecting the intention of self-initiated fine movements prior to their motoric realization. We recorded electroencephalography from the frontal, central, parietal and occipital lobes of 10 participants using a self-initiated switch activation protocol. Eye movement artifacts were removed by regression and the RP was detected on a single-trial basis, in a narrow frequency range (0.1–1 Hz). Common average reference was applied prior to windowed-averaging for feature extraction. Electrodes were selected according to a separability measure based on Fisher projection. Our findings demonstrate that feature fusion from an optimal number of electrodes achieves a statistically significant lower classification error than the best single classifier. Finally, voluntary fine movement intention was detected on a single-trial basis at above-chance levels approximately 396 ms before physical switch activation. These findings encourage the development of rapid-response, intention-aware HMIs for individuals with severe disabilities who struggle with executing voluntary fine motor movements.