World Scientific
  • Search
  •   
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×
Our website is made possible by displaying certain online content using javascript.
In order to view the full content, please disable your ad blocker or whitelist our website www.worldscientific.com.

System Upgrade on Tue, Oct 25th, 2022 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at [email protected] for any enquiries.

Corticomuscular and Intermuscular Coupling in Simple Hand Movements to Enable a Hybrid Brain–Computer Interface

    https://doi.org/10.1142/S0129065721500520Cited by:15 (Source: Crossref)
    This article is part of the issue:

    Hybrid Brain–Computer Interfaces (BCIs) for upper limb rehabilitation after stroke should enable the reinforcement of “more normal” brain and muscular activity. Here, we propose the combination of corticomuscular coherence (CMC) and intermuscular coherence (IMC) as control features for a novel hybrid BCI for rehabilitation purposes. Multiple electroencephalographic (EEG) signals and surface electromyography (EMG) from 5 muscles per side were collected in 20 healthy participants performing finger extension (Ext) and grasping (Grasp) with both dominant and non-dominant hand. Grand average of CMC and IMC patterns showed a bilateral sensorimotor area as well as multiple muscles involvement. CMC and IMC values were used as features to classify each task versus rest and Ext versus Grasp. We demonstrated that a combination of CMC and IMC features allows for classification of both movements versus rest with better performance (Area Under the receiver operating characteristic Curve, AUC) for the Ext movement (0.97) with respect to Grasp (0.88). Classification of Ext versus Grasp also showed high performances (0.99). All in all, these preliminary findings indicate that the combination of CMC and IMC could provide for a comprehensive framework for simple hand movements to eventually be employed in a hybrid BCI system for post-stroke rehabilitation.

    References

    • 1. M. A. Cervera, S. R. Soekadar, J. Ushiba, J. D. R. Millán, M. Liu, N. Birbaumer and G. Garipelli , Brain–computer interfaces for post-stroke motor rehabilitation: A meta-analysis, Ann. Clin. Transl. Neurol. 5 (2018) 651–663. Medline, ISIGoogle Scholar
    • 2. E. Monge-Pereira, F. Molina-Rueda, F. M. Rivas-Montero, J. Ibáñez, J. I. Serrano, I. M. Alguacil-Diego and J. C. Miangolarra-Page , Electroencephalography as a post-stroke assessment method: An updated review, Neurologia 32(1) (2017) 40–49. Medline, ISIGoogle Scholar
    • 3. J. A. Barios, S. Ezquerro, A. Bertomeu-Motos, M. Nann, Fco. J. Badesa, E. Fernandez, S. R. Soekadar and N. Garcia-Aracil , Synchronization of slow cortical rhythms during motor imagery-based brain–machine interface control, Int. J. Neur. Syst. 29(5) (2019) 1850045. Link, ISIGoogle Scholar
    • 4. F. Pichiorri, G. Morone, M. Petti, J. Toppi, I. Pisotta, M. Molinari, S. Paolucci, M. Inghilleri, L. Astolfi, F. Cincotti and D. Mattia , Brain–computer interface boosts motor imagery practice during stroke recovery, Ann. Neurol. 77(5) (2015) 851–865. Medline, ISIGoogle Scholar
    • 5. A. Biasiucci, R. Leeb, I. Iturrate, S. Perdikis, A. Al-Khodairy, T. Corbet, A. Schnider, T. Schmidlin, H. Zhang, M. Bassolino, D. Viceic, P. Vuadens, A. G. Guggisberg and J. d R. Millán , Brain-actuated functional electrical stimulation elicits lasting arm motor recovery after stroke, Nature Publishing Group 9(1) (2018) 2421. Google Scholar
    • 6. J. J. Daly and J. R. Wolpaw , Brain–computer interfaces in neurological rehabilitation, Lancet Neurol. 7(11) (2008) 1032–1043. Medline, ISIGoogle Scholar
    • 7. F. Pichiorri and D. Mattia , Brain–computer interfaces in neurologic rehabilitation practice, in Handbook of Clinical Neurology, Vol. 168 (Elsevier, Amsterdam, 2020), pp. 101–116. Google Scholar
    • 8. A. Ortiz-Rosario and H. Adeli , Brain–computer interface technologies: From signal to action, Rev. Neurosci. 24(5) (2013) 537–552. Medline, ISIGoogle Scholar
    • 9. S. H. George, M. H. Rafiei, A. Borstad, H. Adeli and L. V. Gauthier , Gross motor ability predicts response to upper extremity rehabilitation in chronic stroke, Behav. Brain Res. 333 (2017) 314–322. Medline, ISIGoogle Scholar
    • 10. Y.-T. Chen, S. Li, E. Magat, P. Zhou and S. Li , Motor overflow and spasticity in chronic stroke share a common pathophysiological process: Analysis of within-limb and between-limb EMG-EMG coherence, Front. Neurol. 9 (2018) 795. Medline, ISIGoogle Scholar
    • 11. J. P. Dewald, P. S. Pope, J. D. Given, T. S. Buchanan and W. Z. Rymer , Abnormal muscle coactivation patterns during isometric torque generation at the elbow and shoulder in hemiparetic subjects, Brain 118( Pt 2 ) (1995) 495–510. Medline, ISIGoogle Scholar
    • 12. M. F. Levin, R. W. Selles, M. H. Verheul and O. G. Meijer , Deficits in the coordination of agonist and antagonist muscles in stroke patients: Implications for normal motor control, Brain Res. 853(2) (2000) 352–369. Medline, ISIGoogle Scholar
    • 13. L. C. Miller and J. P. A. Dewald , Involuntary paretic wrist/finger flexion forces and EMG increase with shoulder abduction load in individuals with chronic stroke, Clin. Neurophysiol. 123(6) (2012) 1216–1225. Medline, ISIGoogle Scholar
    • 14. C. C. Silva, A. Silva, A. Sousa, A. R. Pinheiro, C. Bourlinova, A. Silva, A. Salazar, C. Borges, C. Crasto, M. V. Correia, J. P. Vilas-Boas and R. Santos , Co-activation of upper limb muscles during reaching in post-stroke subjects: An analysis of the contralesional and ipsilesional limbs, J. Electromyogr. Kinesiol. 24(5) (2014) 731–738. Medline, ISIGoogle Scholar
    • 15. A. Chalard, D. Amarantini, J. Tisseyre, P. Marque and D. Gasq , Spastic co-contraction is directly associated with altered cortical beta oscillations after stroke, Clin. Neurophysiol. 131(6) (2020) 1345–1353. Medline, ISIGoogle Scholar
    • 16. J.-H. Park, J.-H. Shin, H. Lee, J. Roh and H.-S. Park , Alterations in intermuscular coordination underlying isokinetic exercise after a stroke and their implications on neurorehabilitation, J. Neuroeng. Rehabil. 18(1) (2021) 110. Medline, ISIGoogle Scholar
    • 17. G. Müller-Putz, R. Leeb, M. Tangermann, J. Höhne, A. Kübler, F. Cincotti, D. Mattia, R. Rupp, K. Müller and J. d R. Millán , Towards noninvasive hybrid brain–computer interfaces: Framework, practice, clinical application, and beyond, Proc. IEEE 103(6) (2015) 926–943. ISIGoogle Scholar
    • 18. A. Riccio, E. M. Holz, P. Aricò, F. Leotta, F. Aloise, L. Desideri, M. Rimondini, A. Kübler, D. Mattia and F. Cincotti , Hybrid P300-based brain-computer interface to improve usability for people with severe motor disability: Electromyographic signals for error correction during a spelling task, Arch. Phys. Med. Rehabil. 96(3) (2015) S54–S61. Medline, ISIGoogle Scholar
    • 19. I. Choi, I. Rhiu, Y. Lee, M. H. Yun and C. S. Nam , A systematic review of hybrid brain-computer interfaces: Taxonomy and usability perspectives, PLoS One 12(4) (2017) e0176674. Medline, ISIGoogle Scholar
    • 20. M. Kawakami, T. Fujiwara, J. Ushiba, A. Nishimoto, K. Abe, K. Honaga, A. Nishimura, K. Mizuno, M. Kodama, Y. Masakado and M. Liu , A new therapeutic application of brain-machine interface (BMI) training followed by hybrid assistive neuromuscular dynamic stimulation (HANDS) therapy for patients with severe hemiparetic stroke: A proof of concept study, Restor. Neurol. Neurosci. 34(35) (2016) 789–797. Medline, ISIGoogle Scholar
    • 21. F. Grimm, A. Walter, M. Spüler, G. Naros, W. Rosenstiel and A. Gharabaghi , Hybrid neuroprosthesis for the upper limb: Combining brain-controlled neuromuscular stimulation with a multi-joint arm exoskeleton, Front. Neurosci. 10 (2016) 367. Medline, ISIGoogle Scholar
    • 22. E. Lóopez-Larraz, N. Birbaumer and A. Ramos-Murguialday , A hybrid EEG-EMG BMI improves the detection of movement intention in cortical stroke patients with complete hand paralysis, in 2018 40th Annual Int. Conf. IEEE Engineering in Medicine and Biology Society (EMBC) (Honolulu, HI, USA, 2018), pp. 2000–2003. Google Scholar
    • 23. A. Sarasola-Sanz, N. Irastorza-Landa, E. López-Larraz, C. Bibián, F. Helmhold, D. Broetz, N. Birbaumer and A. Ramos-Murguialday , A hybrid brain–machine interface based on EEG and EMG activity for the motor rehabilitation of stroke patients, in 2017 Int. Conf. Rehabilitation Robotics (ICORR) (London, UK, 2017), pp. 895–900. Google Scholar
    • 24. G. Morone, G. F. Spitoni, D. De Bartolo, S. Ghanbari Ghooshchy, F. Di Iulio, S. Paolucci, P. Zoccolotti and M. Iosa , Rehabilitative devices for a top-down approach, Expert Rev. Med. Devices 16(3) (2019) 187–195. Medline, ISIGoogle Scholar
    • 25. A. Burns, H. Adeli and J. A. Buford , Upper limb movement classification via electromyographic signals and an enhanced probabilistic network, J. Med. Syst. 44(10) (2020) 176. Medline, ISIGoogle Scholar
    • 26. T. Mima, K. Toma, B. Koshy and M. Hallett , Coherence between cortical and muscular activities after subcortical stroke, Stroke 32(11) (2001) 2597–2601. Medline, ISIGoogle Scholar
    • 27. K. von Carlowitz-Ghori, Z. Bayraktaroglu, F. U. Hohlefeld, F. Losch, G. Curio and V. V. Nikulin , Corticomuscular coherence in acute and chronic stroke, Clin. Neurophysiol. 125(6) (2014) 1182–1191. Medline, ISIGoogle Scholar
    • 28. L. H. Larsen, I. C. Zibrandtsen, T. Wienecke, T. W. Kjaer, M. S. Christensen, J. B. Nielsen and H. Langberg , Corticomuscular coherence in the acute and subacute phase after stroke, Clin. Neurophysiol. 128(11) (2017) 2217–2226. Medline, ISIGoogle Scholar
    • 29. Z. Guo, Q. Qian, K. Wong, H. Zhu, Y. Huang, X. Hu and Y. Zheng , Altered corticomuscular coherence (CMCoh) pattern in the upper limb during finger movements after stroke, Front. Neurol. 11 (2020) 410. Medline, ISIGoogle Scholar
    • 30. R. Krauth, J. Schwertner, S. Vogt, S. Lindquist, M. Sailer, A. Sickert, J. Lamprecht, S. Perdikis, T. Corbet, J. del R. Millán, H. Hinrichs, H.-J. Heinze and C. M. Sweeney-Reed , Cortico-muscular coherence is reduced acutely post-stroke and increases bilaterally during motor recovery: A pilot study, Front. Neurol. 10 (2019) 126. Medline, ISIGoogle Scholar
    • 31. S. W. Lee, K. Landers and M. L. Harris-Love , Activation and intermuscular coherence of distal arm muscles during proximal muscle contraction, Exp. Brain Res. 232(3) (2014) 739–752. Medline, ISIGoogle Scholar
    • 32. C. Charissou, D. Amarantini, R. Baurès, E. Berton and L. Vigouroux , Effects of hand configuration on muscle force coordination, co-contraction and concomitant intermuscular coupling during maximal isometric flexion of the fingers, Eur. J. Appl. Physiol. 117(11) (2017) 2309–2320. Medline, ISIGoogle Scholar
    • 33. K. von Carlowitz-Ghori, Z. Bayraktaroglu, G. Waterstraat, G. Curio and V. V. Nikulin , Voluntary control of corticomuscular coherence through neurofeedback: A proof-of-principle study in healthy subjects, Neuroscience 290 (2015) 243–254. Medline, ISIGoogle Scholar
    • 34. D. C. Marquez, V. von Tscharner, K. Murari and B. M. Nigg , Development of a multichannel current-EMG system for coherence modulation with visual biofeedback, Plos One 13(11) (2018) e0206871. Medline, ISIGoogle Scholar
    • 35. A. Ramos-Murguialday, D. Broetz, M. Rea, L. Läer, O. Yilmaz, F. L. Brasil, G. Liberati, M. R. Curado, E. Garcia-Cossio, A. Vyziotis, W. Cho, M. Agostini, E. Soares, S. Soekadar, A. Caria, L. G. Cohen and N. Birbaumer , Brain-machine interface in chronic stroke rehabilitation: A controlled study, Ann. Neurol. 74(1) (2013) 100–108. Medline, ISIGoogle Scholar
    • 36. A. Chowdhury, H. Raza, Y. K. Meena, A. Dutta and G. Prasad , An EEG-EMG correlation-based brain-computer interface for hand orthosis supported neuro-rehabilitation, J. Neurosci. Methods 312 (2019) 1–11. Medline, ISIGoogle Scholar
    • 37. G. Silasi and T. H. Murphy , Stroke and the connectome: How connectivity guides therapeutic intervention, Neuron 83(6) (2014) 1354–1368. Medline, ISIGoogle Scholar
    • 38. N. Ejaz, J. Xu, M. Branscheidt, B. Hertler, H. Schambra, M. Widmer, A. V. Faria, M. D. Harran, J. C. Cortes, N. Kim, P. A. Celnik, T. Kitago, A. R. Luft, J. W. Krakauer and J. Diedrichsen , Evidence for a subcortical origin of mirror movements after stroke: A longitudinal study, Brain 141(3) (2018) 837–847. Medline, ISIGoogle Scholar
    • 39. J. Tisseyre, D. Amarantini, A. Chalard, P. Marque, D. Gasq and J. Tallet , Mirror Movements are Linked to Executive Control in Healthy and Brain-injured Adults, Neuroscience 379 (2018) 246–256. Medline, ISIGoogle Scholar
    • 40. M. Barbero, R. Merletti and A. Rainoldi , Atlas of Muscle Innervation Zones: Understanding Surface Electromyography and Its Applications (Springer-Verlag, Mailand, 2012). Google Scholar
    • 41. D. Stegeman and H. Hermens, Standards for suface electromyography: The European project Surface EMG for non-invasive assessment of muscles (SENIAM), 1 (2007). Google Scholar
    • 42. A. Rainoldi, G. Galardi, L. Maderna, G. Comi, L. Lo Conte and R. Merletti , Repeatability of surface EMG variables during voluntary isometric contractions of the biceps brachii muscle, J. Electromyogr. Kinesiol. 9(2) (1999) 105–119. Medline, ISIGoogle Scholar
    • 43. S. Rota, I. Rogowski, S. Champely and C. Hautier , Reliability of EMG normalisation methods for upper-limb muscles, J. Sports Sci. 31(15) (2013) 1696–1704. Medline, ISIGoogle Scholar
    • 44. V. de Seta, J. Toppi, F. Pichiorri, M. Masciullo, E. Colamarino, D. Mattia, F. Cincotti , Towards a hybrid EEG-EMG feature for the classification of upper limb movements: Comparison of different processing pipelines, in 2021 10th Int. IEEE/EMBS Conf. Neural Engineering (NER), 2021, pp. 355–358. Google Scholar
    • 45. T. Mima and M. Hallett , Corticomuscular coherence: A review, Clin. Neurophysiol. 16(6) (1999) 501–511. ISIGoogle Scholar
    • 46. J. Bigot, M. Longcamp, F. Dal Maso and D. Amarantini , A new statistical test based on the wavelet cross-spectrum to detect time–frequency dependence between non-stationary signals: Application to the analysis of cortico-muscular interactions, NeuroImage 55(4) (2011) 1504–1518. Medline, ISIGoogle Scholar
    • 47. D. G. Kamper, H. C. Fischer, M. O. Conrad, J. D. Towles, W. Z. Rymer and K. M. Triandafilou , Finger-thumb coupling contributes to exaggerated thumb flexion in stroke survivors, J. Neurophysiol. 111(12) (2014) 2665–2674. Medline, ISIGoogle Scholar
    • 48. J. R. Rosenberg, A. M. Amjad, P. Breeze, D. R. Brillinger and D. M. Halliday , The Fourier approach to the identification of functional coupling between neuronal spike trains, Prog. Biophys. Mol. Biol. 53(1) (1989) 1–31. Medline, ISIGoogle Scholar
    • 49. Y. Benjamini and D. Yekutieli , The control of the false discovery rate in multiple testing under dependency, Ann. Stat. 29(4) (2001) 1165–1188. ISIGoogle Scholar
    • 50. J. O. Rawlings, S. G. Pantula and D. A. Dickey , Applied Regression Analysis: A Research Tool, 2nd edn. (Springer-Verlag, New York, 1998). Google Scholar
    • 51. T. Fawcett , An introduction to ROC analysis, Pattern Recognit. Lett. 27(8) (2006) 861–874. ISIGoogle Scholar
    • 52. J. Liu, Y. Sheng and H. Liu , Corticomuscular coherence and its applications: A review, Front. Hum. Neurosci. 13 (2019) 1–16. Medline, ISIGoogle Scholar
    • 53. A. Nakamura, T. Yamada, A. Goto, T. Kato, K. Ito, Y. Abe, T. Kachi and R. Kakigi , Somatosensory homunculus as drawn by MEG, NeuroImage 7(4) (1998) 377–386. Medline, ISIGoogle Scholar
    • 54. C. Toro, G. Deuschl, R. Thatcher, S. Sato, C. Kufta and M. Hallett , Event-related desynchronization and movement-related cortical potentials on the ECoG and EEG, Electroencephalogr. Clin. Neurophysiol. 93(5) (1994) 380–389. MedlineGoogle Scholar
    • 55. P. Ofner, A. Schwarz, J. Pereira and G. R. Müller-Putz , Upper limb movements can be decoded from the time-domain of low-frequency EEG, PLoS One 12(8) (2017) e0182578. Medline, ISIGoogle Scholar
    • 56. A. Schwarz, M. K. Höller, J. Pereira, P. Ofner and G. R. Müller-Putz , Decoding hand movements from human EEG to control a robotic arm in a simulation environment, J. Neural. Eng. 17(3) (2020) 036010. Medline, ISIGoogle Scholar
    • 57. T. Mima and M. Hallett , Electroencephalographic analysis of cortico-muscular coherence: Reference effect, volume conduction and generator mechanism, Clin. Neurophysiol. 110(11) (1999) 1892–1899. Medline, ISIGoogle Scholar
    • 58. C. Rau, C. Plewnia, F. Hummel and C. Gerloff , Event-related desynchronization and excitability of the ipsilateral motor cortex during simple self-paced finger movements, Clin. Neurophysiol. 114(10) (2003) 1819–1826. Medline, ISIGoogle Scholar
    • 59. G. Pfurtscheller and F. H. Lopes da Silva , Event-related EEG/MEG synchronization and desynchronization: Basic principles, Clin. Neurophysiol. 110(11) (1999) 1842–1857. Medline, ISIGoogle Scholar
    • 60. C. Babiloni, F. Carducci, F. Cincotti, P. M. Rossini, C. Neuper, G. Pfurtscheller and F. Babiloni , Human movement-related potentials versus desynchronization of EEG alpha rhythm: A high-resolution EEG study, NeuroImage 10(6) (1999) 658–665. Medline, ISIGoogle Scholar
    • 61. C. Neuper and G. Pfurtscheller , Event-related dynamics of cortical rhythms: Frequency-specific features and functional correlates, Int. J. Psychophysiol. 43(1) (2001) 41–58. Medline, ISIGoogle Scholar
    • 62. A. I. Sburlea and G. R. Müller-Putz , Exploring representations of human grasping in neural, muscle and kinematic signals, Nature Publishing Group 8(1) (2018) 16669. Google Scholar
    • 63. F. Pichiorri, F. D. V. Fallani, F. Cincotti, F. Babiloni, M. Molinari, S. C. Kleih, C. Neuper, A. Kübler and D. Mattia , Sensorimotor rhythm-based brain–computer interface training: The impact on motor cortical responsiveness, J. Neural Eng. 8(2) (2011) 025020. Medline, ISIGoogle Scholar
    • 64. P. Brown and J. F. Marsden , Cortical network resonance and motor activity in humans, Neuroscientist 7(6) (2001) 518–527. Medline, ISIGoogle Scholar
    • 65. J. A. Norton and M. A. Gorassini , Changes in cortically related intermuscular coherence accompanying improvements in locomotor skills in incomplete spinal cord injury, J. Neurophysiol. 95(4) (2006) 2580–2589. Medline, ISIGoogle Scholar
    • 66. X. Lou, S. Xiao, Y. Qi, X. Hu, Y. Wang and X. Zheng , Corticomuscular coherence analysis on hand movement distinction for active rehabilitation, Comput. Math. Methods Med. 2013 (2013) 908591. Medline, ISIGoogle Scholar
    • 67. F. Quandt and F. C. Hummel , The influence of functional electrical stimulation on hand motor recovery in stroke patients: A review, Exp. Transl. Stroke Med. 6(1) (2014) 9. MedlineGoogle Scholar
    • 68. M. Gandolfi, N. Valè, E. K. Dimitrova, S. Mazzoleni, E. Battini, M. Filippetti, A. Picelli, A. Santamato, M. Gravina, L. Saltuari and N. Smania , Effectiveness of robot-assisted upper limb training on spasticity, function and muscle activity in chronic stroke patients treated with botulinum toxin: A randomized single-blinded controlled trial, Front. Neurol. 10 (2019) 41. Medline, ISIGoogle Scholar
    • 69. K. S. Sunnerhagen, A. Opheim and M. Alt Murphy , Onset, time course and prediction of spasticity after stroke or traumatic brain injury, Ann. Phys. Rehabil. Med. 62(6) (2019) 431–434. Medline, ISIGoogle Scholar
    • 70. V. Mondini, R. J. Kobler, A. I. Sburlea and G. R. Müller-Putz , Continuous low-frequency EEG decoding of arm movement for closed-loop, natural control of a robotic arm, J. Neural Eng. 17(4) (2020) 046031. Medline, ISIGoogle Scholar
    • 71. P. Ofner, A. Schwarz, J. Pereira, D. Wyss, R. Wildburger and G. R. Müller-Putz , Attempted arm and hand movements can be decoded from low-frequency EEG from persons with spinal cord injury, Sci. Rep. 9(1) (2019) 7134. Medline, ISIGoogle Scholar
    • 72. A. Ramos-Murguialday, E. García-Cossio, A. Walter, W. Cho, D. Broetz, M. Bogdan, L. G. Cohen and N. Birbaumer , Decoding upper limb residual muscle activity in severe chronic stroke, Ann. Clin. Transl. Neurol. 2(1) (2015) 1–11. Medline, ISIGoogle Scholar
    Remember to check out the Most Cited Articles!

    Check out our titles in neural networks today!