World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Classification of Depth of Coma Using Complexity Measures and Nonlinear Features of Electroencephalogram Signals

    https://doi.org/10.1142/S0129065722500186Cited by:10 (Source: Crossref)

    In recent years, some electrophysiological analysis methods of consciousness have been proposed. Most of these studies are based on visual interpretation or statistical analysis, and there is hardly any work classifying the level of consciousness in a deep coma. In this study, we perform an analysis of electroencephalography complexity measures by quantifying features efficiency in differentiating patients in different consciousness levels. Several measures of complexity have been proposed to quantify the complexity of signals. Our aim is to lay the foundation of a system that will objectively define the level of consciousness by performing a complexity analysis of Electroencephalogram (EEG) signals. Therefore, a nonlinear analysis of EEG signals obtained with a recording scheme proposed by us from 39 patients with Glasgow Coma Scale (GCS) between 3 and 8 was performed. Various entropy values (approximate entropy, permutation entropy, etc.) obtained from different algorithms, Hjorth parameters, Lempel–Ziv complexity and Kolmogorov complexity values were extracted from the signals as features. The features were analyzed statistically and the success of features in classifying different levels of consciousness was measured by various classifiers. Consequently, levels of consciousness in deep coma (GCS between 3 and 8) were classified with an accuracy of 90.3%. To the authors’ best knowledge, this is the first demonstration of the discriminative nonlinear features extracted from tactile and auditory stimuli EEG signals in distinguishing different GCSs of comatose patients.