World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Exploring the Versatility of Spiking Neural Networks: Applications Across Diverse Scenarios

    https://doi.org/10.1142/S0129065725500078Cited by:0 (Source: Crossref)

    In the last few decades, Artificial Neural Networks have become more and more important, evolving into a powerful tool to implement learning algorithms. Spiking neural networks represent the third generation of Artificial Neural Networks; they have earned growing significance due to their remarkable achievements in pattern recognition, finding extensive utility across diverse domains such as e.g. diagnostic medicine. Usually, Spiking Neural Networks are slightly less accurate than other Artificial Neural Networks, but they require a reduced amount of energy to perform calculations; this amount of energy further reduces in a very significant manner if they are implemented on hardware specifically designed for them, like neuromorphic hardware. In this work, we focus on exploring the versatility of Spiking Neural Networks and their potential applications across a range of scenarios by exploiting their adaptability and dynamic processing capabilities, which make them suitable for various tasks. A first rough network is designed based on the dataset’s general attributes; the network is then refined through an extensive grid search algorithm to identify the optimal values for hyperparameters. This dual-step process ensures that the Spiking Neural Network can be tailored to diverse and potentially very different situations in a direct and intuitive manner. We test this by considering three different scenarios: epileptic seizure detection, both considering binary and multi-classification tasks, as well as wine classification. The proposed methodology turned out to be highly effective in binary class scenarios: the Spiking Neural Networks models achieved significantly lower energy consumption compared to Artificial Neural Networks while approaching nearly 100% accuracy. In the case of multi-class classification, the model achieved an accuracy of approximately 90%, thus indicating that it can still be further improved.