World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Physicochemical characterization and size-resolved source apportionment of airborne particles in Himeji City, Japan

    https://doi.org/10.1142/S0129083514500016Cited by:0 (Source: Crossref)

    As a part of epidemiological study on the effects of the chemical composition of airborne particulate matter (PM) and ozone on asthma attacks, we carried out size-resolved sampling of PM in Himeji City, Japan and elemental and ionic composition analyses of the PM samples. Size-resolved PM was collected using a 3-stage NLAS impactor (Tokyo Dylec Co., Ltd.; particle cut size at sampling stages was 10, 2.5 and 1.0 μμm for a flow rate of 3 L/min) with a 1-week sampling interval from November 2009 to May 2012. Concentrations of several elemental and ionic species in the PM samples were determined by PIXE and ion chromatography analysis, respectively. In addition, source apportionment analysis of the PM was performed by positive matrix factorization (PMF) model using the analytical data of size-resolved particles. The research results are important for the physicochemical characterization of PM in the atmosphere, enabling evaluation of various PM emission sources and atmospheric processes. Of particular note is that the PM10 consisted mainly of NO-3NO3 and SO2-4SO24, and PM2.5 consisted only of SO2-4SO24. This is believed to suggest the different formation processes of NO-3NO3 and SO2-4SO24. Based on the results from the PMF model analysis, the particles larger then PM2.5 were estimated to have been from soil and sea salt particles. On the other hand, the particles smaller than PM2.5 were estimated to have been from soot, smoke and secondary particles. In particular, the majority of particle smaller than PM1.0 were estimated to be secondary sulfate particles.