World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.
Special Issue on 23rd Connecticut Microelectronics and Optoelectronics Consortium Symposium (CMOC-2014) April 9, Connecticut, USA; Edited by F. Jain, C. Broadbridge and H. TangNo Access

Equilibrium Lattice Relaxation and Misfit Dislocations in Continuously- and Step-Graded InxGa1-xAs/GaAs (001) and GaAs1-yPy/GaAs (001) Metamorphic Buffer Layers

    https://doi.org/10.1142/S0129156415200098Cited by:1 (Source: Crossref)

    The inclusion of metamorphic buffer layers (MBL) in the design of lattice-mismatched semiconductor heterostructures is important in enhancing reliability and performance of optical and electronic devices. These metamorphic buffer layers usually employ linear grading of composition, and materials including InxGa1-xAs and GaAs1-yPy have been used. Non-uniform and continuously graded profiles are beneficial for the design of partially-relaxed buffer layers because they reduce the threading dislocation density by allowing the distribution of the misfit dislocations throughout the metamorphic buffer layer, rather than concentrating them at the interface where substrate defects and tangling can pin dislocations or otherwise reduce their mobility as in the case of uniform compositional growth. In this work we considered heterostructures involving a linearly-graded (type A) or step-graded (type B) buffer layer grown on a GaAs (001) substrate. For each structure type we present minimum energy calculations and compare the cases of cation (Group III) and anion (Group V) grading. In addition, we studied the (i) average and surface in-plane strain and (ii) average misfit dislocation density for heterostructures with various thickness and compositional profile. Moreover, we show that differences in the elastic stiffness constants give rise to significantly different behavior in these two commonly-used buffer layer systems.

    Remember to check out the Most Cited Articles!

    Check out these Notable Titles in Antennas