World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Fast and Reversible Chemiresistive Sensors for Robust Detection of Organic Vapors Using Oleylamine-Functionalized Palladium Nanoparticles

    https://doi.org/10.1142/S012915641840027XCited by:4 (Source: Crossref)
    This article is part of the issue:

    Chemiresistive sensors fabricated by oleylamine-functionalized palladium nanoparticles (OLA-PdNP) have been studied in hydrogen sensing, but not so much in organic vapor sensing. Like the extensively studied gold nanoparticles-based gas sensors, palladium nanoparticles also give the ease of surface modification and large surface-area-to-volume ratio. In this study, we demonstrate an OLA-PdNP chemiresistor array with robust sensor responses (1-15% of ΔR/R0) and accurate discrimination of six organic vapors at a concentration of p/p0 = 0.2, using principal component analysis (PCA). Each microfabricated 36 mm2 chip has 36 individual sensors. By incorporating multiple sensors on one chip, the sensor response gives a distinguishable pattern for each analyte. From this study, an electronic chemical spectrometer can be further developed by incorporating many types of ligands on palladium metal core to enhance sensor accuracy and precision.

    Remember to check out the Most Cited Articles!

    Check out these Notable Titles in Antennas