World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

REALIZING OPEN-DESTINATION AND CONTROLLED TELEPORTATION OF A ROTATION USING PARTIALLY ENTANGLED PAIRS

    https://doi.org/10.1142/S0217979211101041Cited by:5 (Source: Crossref)

    We present a scheme for realizing open-destination and controlled teleportation of a single-qubit rotation gate, albeit probabilistically, by using partially entangled pairs of particles. In the scheme, a quantum rotation is faithfully teleported onto any one of N spatially separated receivers under the control of the (N-1) unselected receivers in a network. We first present the three-destination and controlled teleportation of a rotation gate by using three partially entangled pairs, and then generalize the scheme to the case of N-destination. In our scheme, the sender's local generalized measurement described by a positive operator-valued measurement (POVM) lies at the heart. We construct the required POVM. The fact that deterministic and exact teleportation of a rotation gate could be realized using partially entangled pairs is notable.

    PACS: 03.65.Bz, 42.50.-p
    You currently do not have access to the full text article.

    Recommend the journal to your library today!