World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

COMPARATIVE PERFORMANCE STUDY OF PARALLEL PROGRAMMING MODELS IN A NEURAL NETWORK TRAINING CODE

    https://doi.org/10.1142/S0129183102003887Cited by:2 (Source: Crossref)

    This paper discusses the performance studies of a coarse grained parallel neural network training code for control of nonlinear dynamical systems, implemented in the shared memory and message passing parallel programming environments OpenMP and MPI, respectively. In addition, these codes are compared to an implementation utilizing SHMEM the native data passing SGI/Cray environment for parallel programming. The multiprocessor platform used in the study is a SGI/Cray Origin 2000 with up to 32 processors, which supports all these programming models efficiently. The dynamical system used in this study is a nonlinear 0D model of a thermonuclear fusion reactor with the EDA-ITER design parameters. The results show that OpenMP outperforms the other two environments when large number of processors are involved, while yielding a similar or a slightly poorer behavior for small number of processors. As expected the native SGI/Cray environment outperforms MPI for the entire range of processors used. Reasons for the observed performance are given. The parallel efficiency of the code is always greater than 60% regardless of the parallel environment for the range of processors used in this study.

    You currently do not have access to the full text article.

    Recommend the journal to your library today!