World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

A COMPUTATIONAL METHOD FOR ENERGY LEVEL SPIN SPLITTING SIMULATION IN InAs/GaAs SEMICONDUCTOR QUANTUM DOTS

    https://doi.org/10.1142/S0129183102003899Cited by:5 (Source: Crossref)

    An impact of the spin–orbit interaction on the electron quantum confinement is considered theoretically for narrow gap semiconductor cylindrical quantum dots. To study the phenomena for InAs quantum dot embedded into GaAs semiconductor matrix, the effective one electronic band Hamiltonian, the energy position dependent electron effective mass approximation, and the spin-dependent Ben Daniel–Duke boundary conditions are considered, formulated and solved numerically. To solve the nonlinear Schrödinger equation, we propose a nonlinear iterative algorithm. This calculation algorithm not only converges for all simulation cases but also has a good convergent rate. With the developed quantum dot simulator, we study the effect of the spin–orbit interaction for narrow gap InAs/GaAs semiconductor cylindrical quantum dots. From the numerical calculations, it has been observed that the spin–orbit interaction leads to a sizeable spin-splitting of the electron energy states with nonzero angular momentum. Numerical evidence is presented to show the splitting result is strongly dependent on the quantum dot size.

    You currently do not have access to the full text article.

    Recommend the journal to your library today!