World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

ENHANCING STABILITY OF LATTICE-BOLTZMANN SIMULATIONS VIA NEW BOUNDARY CONDITIONS

    https://doi.org/10.1142/S0129183103004176Cited by:1 (Source: Crossref)

    A new boundary condition is developed to enhance numerical stability for moving walls in lattice-Boltzmann simulations. It includes a population "adjustment" procedure at boundaries which allows stable simulations closer to the theoretical limit of τ = 0.5. Couette and lid-driven cavity flow simulations show improved velocity profiles, lower stable relaxation timestep τ and higher Reynolds number Re limits. The new method needs fewer timesteps to achieve steady-state.

    You currently do not have access to the full text article.

    Recommend the journal to your library today!