SOLUTIONS WITHOUT SINGULARITIES IN GAUGE THEORY OF GRAVITATION
Abstract
A de-Sitter gauge theory of the gravitational field is developed using a spherical symmetric Minkowski space–time as base manifold. The gravitational field is described by gauge potentials and the mathematical structure of the underlying space–time is not affected by physical events. The field equations are written and their solutions without singularities are obtained by imposing some constraints on the invariants of the model. An example of such a solution is given and its dependence on the cosmological constant is studied. A comparison with results obtained in General Relativity theory is also presented.
You currently do not have access to the full text article. |
---|