Let ℳℙ3(c1,c2) be the moduli space of stable rank-2 vector bundles on ℙ3 with Chern classes c1, c2. We prove the following results: (1) Let k, β, γ be three integers such that k > 0, 0 ≤ β < γ, γ ≥ 2, kγ - (k + 1)β > 0; then the moduli space ℳℙ3(0, kγ2 - (k + 1)β2) is singular (the case k = 2, β = 0 was previously proved by M. Maggesi).
(2) Let k, β, γ be three integers, with β and γ odd, such that k > 0, 0 < β < γ, γ ≥ 5, kγ - (k + 1)β + 1 > 0; then the moduli space ℳℙ3(-1,k(γ/2)2 - (k + 1)(β/2)2) + 1/4) is singular.
In particular ℳℙ3(0,5), ℳℙ3(-1,6) are singular.