World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

STATISTICAL PHYSICS APPLIED TO STONE-AGE CIVILIZATION

    https://doi.org/10.1142/S012918311101697XCited by:2 (Source: Crossref)

    About 45000 years ago, symbolic and technological complexity of human artefacts increased drastically. Computer simulations of Powell, Shennan and Thomas (2009) explained it through an increase of the population density, facilitating the spread of information about useful innovations. We simplify this demographic model and make it more similar to standard physics models. For this purpose, we assume that bands (extended families) of stone-age humans were distributed randomly on a square lattice such that each lattice site is randomly occupied with probability p and empty with probability 1 - p. Information spreads randomly from an occupied site to one of its occupied neighbors. If we wait long enough, information spreads from one side of the lattice to the opposite site if and only if p is larger than the percolation threshold; this process was called "ant in the labyrinth" by de Gennes 1976. We modify it by giving the diffusing information a finite lifetime, which shifts the threshold upwards.

    You currently do not have access to the full text article.

    Recommend the journal to your library today!