World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

VARIATIONAL QUANTUM TOMOGRAPHY WITH INCOMPLETE INFORMATION BY MEANS OF SEMIDEFINITE PROGRAMS

    https://doi.org/10.1142/S0129183111016981Cited by:17 (Source: Crossref)

    We introduce a new method to reconstruct unknown quantum states out of incomplete and noisy information. The method is a linear convex optimization problem, therefore with a unique minimum, which can be efficiently solved with Semidefinite Programs. Numerical simulations indicate that the estimated state does not overestimate purity, and neither the expectation value of optimal entanglement witnesses. The convergence properties of the method are similar to compressed sensing approaches, in the sense that, in order to reconstruct low rank states, it needs just a fraction of the effort corresponding to an informationally complete measurement.

    PACS: 03.65.Wj, 03.67.-a
    You currently do not have access to the full text article.

    Recommend the journal to your library today!