World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

TAX EVASION AND NONEQUILIBRIUM MODEL ON APOLLONIAN NETWORKS

    https://doi.org/10.1142/S0129183112500799Cited by:5 (Source: Crossref)

    The Zaklan model had been proposed and studied recently using the equilibrium Ising model on square lattices (SLs) by [G. Zaklan, F. Westerhoff and D. Stauffer, J. Econ. Interact. Coord.4, 1 (2008), arXiv:0801.2980; G. Zaklan, F. W. S. Lima and F. Westerhoff, Physica A387, 5857 (2008)], near the critical temperature of the Ising model presenting a well-defined phase transition; but on normal and modified Apollonian networks (ANs), [J. S. Andrade, Jr., H. J. Herrmann, R. F. S. Andrade, and L. R. da Silva, Phys. Rev. Lett.94, 018702 (2005); R. F. S. Andrade, J. S. Andrade Jr. and H. J. Herrmann, Phys. Rev. E79, 036105 (2009)] studied the equilibrium Ising model. They showed the equilibrium Ising model not to present on ANs a phase transition of the type for the 2D Ising model. Here, using agent-based Monte Carlo simulations, we study the Zaklan model with the well-known majority-vote model (MVM) with noise and apply it to tax evasion on ANs, to show that differently from the Ising model the MVM on ANs presents a well-defined phase transition. To control the tax evasion in the economics model proposed by Zaklan et al., MVM is applied in the neighborhood of the critical noise qc to the Zaklan model. Here we show that the Zaklan model is robust because this can also be studied, besides using equilibrium dynamics of Ising model, through the nonequilibrium MVM and on various topologies giving the same behavior regardless of dynamic or topology used here.

    This paper is dedicated to Dietrich Stauffer

    PACS: 64.60.Cn, 05.10.Ln, 64.60.Fr, 75.10.Hk
    You currently do not have access to the full text article.

    Recommend the journal to your library today!