World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Exploiting MIC architectures for the simulation of channeling of charged particles in crystals

    https://doi.org/10.1142/S0129183116500224Cited by:3 (Source: Crossref)

    Coherent effects of ultra-relativistic particles in crystals is an area of science under development. DYNECHARM + + is a toolkit for the simulation of coherent interactions between high-energy charged particles and complex crystal structures. The particle trajectory in a crystal is computed through numerical integration of the equation of motion. The code was revised and improved in order to exploit parallelization on multi-cores and vectorization of single instructions on multiple data. An Intel Xeon Phi card was adopted for the performance measurements. The computation time was proved to scale linearly as a function of the number of physical and virtual cores. By enabling the auto-vectorization flag of the compiler a three time speedup was obtained. The performances of the card were compared to the Dual Xeon ones.

    PACS Nos.: 61.85.+p
    You currently do not have access to the full text article.

    Recommend the journal to your library today!