World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Numerical study of flow pattern around lateral intake in a curved channel

    https://doi.org/10.1142/S0129183119500839Cited by:12 (Source: Crossref)

    This paper deals with numerical study of flow field in a channel bend in presence of a lateral intake using three-dimensional numerical model SSIIM2. The effects of bend on the structure of the flow around the intake are investigated and compared with the experimental data. The tests are carried out in a U-shaped channel bend with a lateral intake. The intake is located at the outer bank of an 180 bend at position 115 with 45 diversion angle and the experimental data can be used to calibrate and validate numerical models. The results show that both the center-region and outer-bank cross-stream circulations are observed in the experiments while only the former is captured by the numerical model due to the limitations of the turbulence model. In the curved channel after the intake, both experimental and numerical results show another type of bi-cellular circulations in which clockwise center-region circulations and counterclockwise circulations near the inner bank and the free surface (inner-bank circulations) are captured. The study shows that the numerical model very satisfactorily predicts streamlines, velocity field and flow pattern in the channel and in vicinity of the intake. Investigation of flow pattern around lateral intake in channel bends shows that contrary to the case of flow diversion in straight channels, the width of the dividing stream surface near water surface level is greater than that of near bed level. Finally, the effects of position and diversion angle of the lateral intake, discharge ratio and upstream Froude number on the flow pattern are investigated.

    You currently do not have access to the full text article.

    Recommend the journal to your library today!