World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Detecting communities from networks based on their intrinsic properties

    https://doi.org/10.1142/S0129183119501043Cited by:2 (Source: Crossref)

    Communities in networks expose some intrinsic properties, each of them involves some influential nodes as its cores, around which the entire community grows gradually; the more the common neighbors that exist between a pair of nodes, the larger the possibility of belonging to the same community; the more the neighbors of any one node belong to a community, the larger the possibility that node belongs to that community too. In this paper, we present a novel method, which makes full utilization of these intrinsic properties to detect communities from networks. We iteratively select the node with the largest degree from the remainder of the network as the first seed of a community, then consider its first- and second-order neighbors to identify other seeds of the community, then expand the community by attracting nodes whose large proportion of neighbors have been in the community to join. In this way, we obtain a series of communities. However, some of them might be too small to make sense. Therefore, we merge some of the initial communities into larger ones to acquire the final community structure. In the entire procedure, we try to keep nodes in every community to be consistent with the properties as possible as we can, this leads to a high-quality result. Moreover, the proposed method works with a higher efficiency, it does not need any prior knowledge about communities (such as the number or the size of communities), and does not need to optimize any objective function either. We carry out extensive experiments on both some artificial networks and some real-world networks to testify the proposed method, the experimental results demonstrate that both the efficiency and the community-structure quality of the proposed method are promising, our method outperforms the competitors significantly.

    PACS: 89.20.Ff, 89.75.Fb, 89.75.Kd
    You currently do not have access to the full text article.

    Recommend the journal to your library today!