Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

SEARCH GUIDE  Download Search Tip PDF File

  • articleNo Access

    Detecting communities from networks based on their intrinsic properties

    Communities in networks expose some intrinsic properties, each of them involves some influential nodes as its cores, around which the entire community grows gradually; the more the common neighbors that exist between a pair of nodes, the larger the possibility of belonging to the same community; the more the neighbors of any one node belong to a community, the larger the possibility that node belongs to that community too. In this paper, we present a novel method, which makes full utilization of these intrinsic properties to detect communities from networks. We iteratively select the node with the largest degree from the remainder of the network as the first seed of a community, then consider its first- and second-order neighbors to identify other seeds of the community, then expand the community by attracting nodes whose large proportion of neighbors have been in the community to join. In this way, we obtain a series of communities. However, some of them might be too small to make sense. Therefore, we merge some of the initial communities into larger ones to acquire the final community structure. In the entire procedure, we try to keep nodes in every community to be consistent with the properties as possible as we can, this leads to a high-quality result. Moreover, the proposed method works with a higher efficiency, it does not need any prior knowledge about communities (such as the number or the size of communities), and does not need to optimize any objective function either. We carry out extensive experiments on both some artificial networks and some real-world networks to testify the proposed method, the experimental results demonstrate that both the efficiency and the community-structure quality of the proposed method are promising, our method outperforms the competitors significantly.

  • articleNo Access

    Overview on L-asparagine monohydrate single crystal: A non-essential amino acid

    This paper reviews the growth and properties of L-asparagine monohydrate (L-ASPM) single crystal. The growth technique by which a well-defined bulk-sized single crystal can be grown is also reported. The various reported studies done over titled crystal signify its suitability for various optoelectronic applications. This paper also includes few derivative compounds of L-asparagine (L-ASP), their structural review has also been incorporated to evaluate its structural bonding and atomic arrangement. Various advanced characterization and their outcomes were also discussed in detail from all the available reported literature which mainly emphasizes on the vast applicability of the crystal. The L-ASPM single crystal is a potential candidate to be used in various optical applications.

  • chapterFree Access

    COLOR IN COMPUTER VISION: RECENT PROGRESS

    The use of color in computer vision has received growing attention. This chapter introduces the basic principles underlying the physics and perception of color and reviews the state-of-the-art in color vision algorithms. Parts of this chapter have been condensed from [58] while new material has been included which provides a critical review of recent work. In particular, research in the areas of color constancy and color segmentation is reviewed in detail.

    The first section reviews physical models for color image formation as well as models for human color perception. Reflection models characterize the relationship between a surface, the illumination environment, and the resulting color image. Physically motivated linear models are used to approximate functions of wavelength using a small number of parameters. Reflection models and linear models are introduced in Section 1 and play an important role in several of the color constancy and color segmentation algorithms presented in Sections 2 and 3. For completeness, we also present a concise summary of the trichromatic theory which models human color perception. A discussion is given of color matching experiments and the CIE color representation system. These models are important for a wide range of applications including the consistent representation of color on different devices. Section 1 concludes with a description of the most widely used color spaces and their properties.

    The second section considers progress on computational approaches to color constancy. Human vision exhibits color constancy as the ability to perceive stable surface colors for a fixed object under a wide range of illumination conditions and scene configurations. A similar ability is required if computer vision systems are to recognize objects in uncontrolled environments. We begin by reviewing the properties and limitations of the early retinex approach to color constancy. We describe in detail the families of linear model algorithms and highlight algorithms which followed. Section 2 concludes with a subsection on recent indexing methods which integrate color constancy with the higher level recognition process.

    Section 3 addresses the use of color for image segmentation and stresses the role of image models. We start by presenting classical statistical approaches to segmentation which have been generalized to include color. The more recent emphasis on the use of physical models for segmentation has led to new classes of algorithms which enable the accurate segmentation of effects such as shadows, highlights, shading, and interreflection. Such effects are often a source of error for algorithms based on classical statistical models. Finally, we describe a color texture model which has been used successfully as the basis of an algorithm for segmenting images of natural outdoor scenes.

  • chapterFree Access

    COLOR IN COMPUTER VISION

    The use of color in computer vision has received growing attention. This chapter gives the state-of-the-art in this subfield, and tries to answer the questions: What is color? Which are the adequate representations? How is it computed? What can be done using it?

    The first section introduces some basic tools and models that can be used to describe the color imaging process. We first summarize the classical photometric and colorimetric notions: light measurement, intensity equation, color signal, color perception, trichromatic theory. The growing interest in color during the last few years comes from two new classes of models of reflection, physical models and linear models, which lead to highlight algorithms as well as color constancy algorithms. We present these models in detail and discuss some of their limitations.

    The second section deals with the problem of color constancy. The term “color constancy” refers to the fact that the colors perceived by humans in real scenes are relatively stable under large variations of illumination and of material composition of scenes. From a computational standpoint, achieving color constancy is an underdetermined problem: computing the spectral reflectance from the sensor measurements. We compare three classes of color constancy algorithms, based on lightness computation, linear models, and physical models, respectively. For each class, the principle is explained, and one or two significant algorithms are given. A comparative study serves to introduce the others.

    The third section is concerned with the use of color in universal, i.e. mainly low-level, vision tasks. We emphasize the distinction between tasks that have been extensively studied in monochromatic images and for which the contribution of color is just a quantitative generalization, and tasks where color has a qualitative role. In the first case, additional image features are obtained, and have to be represented and used efficiently. In the latter case, it is hoped that color can help recover intrinsic physical properties of scenes. We study successively three important themes in computer vision: edges, segmentation, matching. For each of them, we present the two frameworks for the use of color.