World Scientific
  • Search
  •   
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at [email protected] for any enquiries.

Parallel unstructured finite volume lattice Boltzmann method for high-speed viscid compressible flows

    https://doi.org/10.1142/S0129183122500668Cited by:2 (Source: Crossref)

    Based on the double distribution function Boltzmann-BGK equations, a cell-centered finite volume lattice Boltzmann method on unstructured grids for high-speed viscid compressible flows is presented. In the equations, the particle distribution function is introduced on the basis of the D2Q17 circular function, and its corresponding total energy distribution function is adopted. In the proposed method, the advective term is evaluated by Roe’s flux-difference splitting scheme, and a limiter is used to prevent the generation of oscillations. The distribution functions on the interface are calculated by piecewise linear reconstruction, in which the gradient is computed by the least-squares approach. In order to do large-scale simulations, a parallel algorithm is illustrated. The present method is validated by a flow around the NACA0012 airfoil and a flow past a circular cylinder at high Mach numbers. The results agree well with the published results, which demonstrate that the present method is an efficient numerical method for high-speed viscid compressible flows. The parallel performance results show that the proposed parallel algorithm achieves 90% parallel efficiency on 4800 cores for a problem with 1.4×108 unstructured triangle cells, which shows the potential to perform fast and high-fidelity simulations of large-scale high-speed viscid compressible flows in complicated computational domains.

    PACS: 47.11.–j, 05.70.Ln, 51.10.+y

    References

    You currently do not have access to the full text article.

    Recommend the journal to your library today!